
Supplementary Material

Figure 1: Detailed network structure. FCN means fully-
connected network. The output of FCNs will be used as feed-
back for the hidden states of RNN-P1.

A IMPLEMENTATION DETAILS
A.1 Network Sructure
Our system has multiple modules that use a similar network struc-
ture. As shown in Fig. 1, each network consists of one linear layer
with ReLU activation function, two layers of LSTM [Hochreiter and
Schmidhuber 1997] (with the width of 512 except RNN-P2 whose
width is 1280, and RNN-T3 whose width is 1024), and one linear
output layer. The LSTM does not take the future frames as its input.
We use a 40% dropout. In addition, for RNN-P1, a fully-connected
network (FCN) is used for the feedback mechanism, consisting of
2 linear layers with ReLU activation function and one linear out-
put layer, as shown in Fig. 1. The output of FCNs will be used as
feedback for the hidden states of RNN-P1.

A.2 Datasets
We use the AIST++ dataset [Li et al. 2021] and the AMASS dataset
[Mahmood et al. 2019] for training. We perform our evaluations on
TotalCapture [Trumble et al. 2017], AIST++ test split, 3DPW test
split [von Marcard et al. 2018], and 3DPW-OCC [von Marcard et al.
2018; Zhang et al. 2020].

Data Synthesis. For AIST++, AMASS, 3DPW, and 3DPW-OCC
without IMU input, we synthesize the IMU input using ground-
truth SMPL [Loper et al. 2015] parameters. We synthesize the IMU
acceleration as follows:

𝒂 (𝑡 ) =
(
𝒑 (𝑡−1)
v + 𝒑 (𝑡+1)

v − 2𝒑 (𝑡 )
v

)
/𝑡2, (1)

Figure 2: Training samples after synthetic occlusion is ap-
plied.

Figure 3: Examples of non-aligned ground-truthmotion with
the image in the AIST++ [Li et al. 2021] dataset.

where 𝒑v denotes the synthesized IMU positions corresponding to
the predefined vertices of SMPLmesh. And we use the same smooth
factor of 𝑛 = 4 as [Yi et al. 2021]. Because AMASS has no image
input, we synthesize the 2D key points using ground-truth SMPL
[Loper et al. 2015] parameters. For each frame, we first sample a
confidence value 𝑐 from the detected key points’ confidence value in
AIST++. Then we synthesized some random camera poses. Finally,
we sample the 2D key points from:

𝒙 ∼ 𝑁

(
Π(FK(𝜽GT, 𝒕GT)), _conf (1 − 𝑐)

)
, (2)

where Π denotes the projection onto 𝑍 = 1 plane from 3D space.
We experimentally set the parameter _conf = 0.003.

Data Augmentation. Moreover, for AIST++ training, we synthe-
sized the same number of occluded images with its origin dataset.
These occluded images are fed into the 2D detector to extract oc-
cluded 2D keypoints, which are then used to train RNN-P2. We
demonstrate the results of synthetic occlusion in Fig. 2.

Data Preprocessing. Because the ground-truth SMPL meshes in
some sequences of the AIST++ dataset are not aligned with the
images, we drop these sequences. We demonstrate some exam-
ples of lousy ground-truth overlay in Fig. 3. For the TotalCapture
dataset, we dropped three sequences that are not aligned at different
views, and we aligned the ground-truth motions from [Huang et al.



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

2018] with the origin videos. Note that in both 3DPW and 3DPW-
OCC datasets, the camera undergoes movement. Consequently, the
ground-truth translation does not represent the subject’s transla-
tion. Therefore, we only evaluate pose accuracy in these datasets.
The 3DPW and 3DPW-OCC datasets operate at 30 fps; thus, we
perform interpolation on the 2D keypoints.

A.3 Other Details
All training and evaluation processes run on a computer with an
Intel(R) Core(TM) i7-8700 CPU and anNVIDIAGTX2080Ti graphics
card. We use PyTorch 1.7.1 with CUDA 11.0 to implement our
network and optimizer. We use Xsens Dot IMUs in our demo. Both
training and evaluation assume 60 fps IMU input. The training
data is clipped into short sequences in 200-frame lengths for more
effective learning. The batch size is 256, while the learning rate is
1 × 10−3.

B LIVE DEMO
B.1 Calibration
Because of our dual coordinate strategy, we need to align the two
input modalities (image domain 2D keypoints and inertial measure-
ments) by transforming either one to the coordinate system of the
other (body root coordinate system and camera coordinate system).
This process is referred to as calibration.

For the calibration method, we refer to the method in TransPose
[Yi et al. 2021]. Here we list the key steps and essential formu-
las, omitting the detailed proof process, which can be found in
TransPose. There are 5 coordinate frames: 1) the sensor coordinate
frame 𝐹𝑆 , which is the coordinate frame of a single IMU, 2) the
global inertial coordinate frame 𝐹 𝐼 , which is shared by all IMUs, 3)
the coordinate frame of the SMPL model body [Loper et al. 2015],
which is represented as 𝐹𝑀 , 4) the coordinate frame of the camera,
which is represented as 𝐹𝐶 , 5) the body root coordinate frame of
the subject, which is represented as 𝐹𝑅 . The first step is adjusting
the orientation of the IMU sensor so that the axes of its sensor
coordinate frame 𝐹𝑆 are aligned with the corresponding axes of
the camera coordinate frame 𝐹𝐶 . From this step we can calculate
𝑷 𝐼𝐶 , which is the transition matrix from 𝐹 𝐼 to 𝐹𝐶 . The second step
is to adjust the orientation of the IMU sensor so that the axes of its
sensor coordinate frame 𝐹𝑆 are aligned with the corresponding axes
of the SMPL coordinate frame 𝐹𝑀 . From this step, our system can
automatically calculate 𝑃 𝐼𝑀 , which is the transition matrix from
𝐹 𝐼 to 𝐹𝑀 . Then, let the user put on the IMUs to the body and keep
still in predefined poses (e.g., T-Pose) for a few seconds. Predefined
means we know the rotation of the bone wearing the IMU (e.g.,
arm) relative to 𝐹𝑀 , which is represented as 𝑹bone[𝑖 ]

𝑀
and 𝑖 (0, 1, ...5)

denotes the serial number of IMU. Using these few seconds of IMU
measurements, we calculate the acceleration 𝒂sensor[𝑖 ]

𝑆
relative to

𝐹𝑆 and the orientation 𝑹sensor[𝑖 ]
𝐼

relative to 𝐹𝐼 . Next, for the rota-
tion, we calculate 𝑹offset[𝑖 ]

𝐼
, which is rotation offsets between the

IMUs and corresponding bones, which is constant after the devices
are set up as follows:

𝑹offset[𝑖 ]
𝐼

=

(
𝑹sensor[𝑖 ]
𝐼

)−1
𝒑𝐼𝑀𝑹bone[𝑖 ]

𝑀
. (3)

And we calculate 𝑹bone[𝑖 ]
𝐶

per frame as:

𝑹bone[𝑖 ]
𝐶

=

(
𝑷 𝐼𝐶

)−1
𝑹sensor[𝑖 ]
𝐼

𝑹offset[𝑖 ]
𝐼

. (4)

Then, we calculate the global acceleration offset as follows (after
subtracting the gravity):

𝒂offset[𝑖 ]
𝐶

=

(
𝒑𝐼𝐶

)−1
𝑹sensor[𝑖 ]
𝐼

𝒂sensor[𝑖 ]
𝑆

. (5)

Finally, we use 𝒂bone[𝑖 ]
𝐼

and 𝒂offset[𝑖 ]
𝐶

to calculate 𝒂bone[𝑖 ]
𝐶

per frame.
Once the aforementioned information has been computed, we

can proceed to transform inputs and outputs across various coor-
dinate systems. Utilizing the orientation of root IMU in the SMPL
coordinate system 𝑹bone[0]

𝑀
, we can convert data between the root

and the SMPL coordinate systems. And we calculate calibrated
camera extrinsic matrix 𝑷𝐶𝑀 as:

𝑷𝐶𝑀 =

(
𝑷 𝐼𝐶

)−1
𝑷 𝐼𝑀 , (6)

By leveraging the calibrated camera extrinsic, we can transform
the data between the camera and the SMPL coordinate system.

B.2 Other Details
Our hardware configuration for recording the live demo is as fol-
lows: two laptops are used. The first one is used to run the Medi-
aPipe[Lugaresi et al. 2019] 2D detector to extract the 2D coordinates
of the keypoints of the human body in each frame from the video
stream captured by the camera. At the same time, this laptop re-
ceives the measurement from the IMU via Bluetooth and then sends
the 2D keypoints together with the IMU data to the second laptop
by the socket. This process is running at an Intel(R) Core(TM) i7-
12700H CPU. After the second laptop receives the 2D coordinates
and IMU data, it runs our model to estimate the human body’s joint
rotations and global translation. The second laptop renders human
motion onto the screen using Unity3D. Since we render the mo-
tion only by Unity3D, we do not run the reprojection optimization.
This process demo runs on the laptop with an Intel(R) Core(TM)
i7-10750H CPU and an NVIDIA RTX2080 Super graphics card.

REFERENCES
Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural

computation 9, 8 (1997), 1735–1780.
Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J. Black, Otmar Hilliges, and

Gerard Pons-Moll. 2018. Deep Inertial Poser Learning to Reconstruct Human Pose
from SparseInertial Measurements in Real Time. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia) 37 (nov 2018).

Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. 2021. Learn to Dance
with AIST++: Music Conditioned 3D Dance Generation. arXiv:2101.08779 [cs.CV]

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: a skinned multi-person linear model. international conference
on computer graphics and interactive techniques (2015).

Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee, Wan-
Teh Chang, Wei Hua, Manfred Georg, and Matthias Grundmann. 2019. MediaPipe:
A Framework for Building Perception Pipelines. arXiv:1906.08172 [cs.DC]

NaureenMahmood, NimaGhorbani, Nikolaus F. Troje, Gerard Pons-Moll, andMichael J.
Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In International
Conference on Computer Vision. 5442–5451.

Matt Trumble, Andrew Gilbert, Charles Malleson, Adrian Hilton, and John Collomosse.
2017. Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors.
In 2017 British Machine Vision Conference (BMVC).

Timo von Marcard, Roberto Henschel, Michael J. Black, Bodo Rosenhahn, and Gerard
Pons-Moll. 2018. Recovering Accurate {3D} Human Pose in the Wild Using {IMUs}
and a Moving Camera. european conference on computer vision (2018).

https://arxiv.org/abs/2101.08779
https://arxiv.org/abs/1906.08172


Supplementary Material SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Xinyu Yi, Yuxiao Zhou, and FengXu. 2021. TransPose: Real-time 3DHuman Translation
and Pose Estimation with Six Inertial Sensors. ACM Transactions on Graphics 40
(08 2021).

T. Zhang, B. Huang, and Y. Wang. 2020. Object-Occluded Human Shape and Pose
Estimation From a Single Color Image. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).


	A Implementation Details
	A.1 Network Sructure
	A.2 Datasets
	A.3 Other Details

	B LIVE DEMO
	B.1 Calibration
	B.2 Other Details

	References

